Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 75(9): 2490-2504, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30868714

RESUMO

BACKGROUND: New modes of action are needed for herbicides. The flavonoid synthesis intermediate t-chalcone causes apoptosis-like symptoms in roots and bleaching of shoots of Arabidospsis, suggesting a unique mode of action as a phytotoxin. RESULTS: Using RNA-Seq, transcriptome changes were monitored in Arabidopsis seedlings during the first 24 h of exposure (at 1, 3, 6, 12 and 24 h) to 21 µm t-chalcone (I50 dose), examining effects on roots and shoots separately. Expression of 892 and 1000 genes was affected in roots and shoots, respectively. According to biological classification, many of the affected genes were transcription factors and genes associated with oxidative stress, heat shock proteins, xenobiotic detoxification, ABA and auxin biosynthesis, and primary metabolic processess. These are secondary effects found with most phytotoxins. Potent phytotoxins usually act by inhibiting enzymes of primary metabolism. KEGG pathway analysis of transcriptome results from the first 3 h of t-chalcone exposure indicated several potential primary metabolism target sites for t-chalcone. Of these, p-hydroxyphenylpyruvate dioxygenase (HPPD) and tyrosine amino transferase were consistent with the bleaching effect of the phytotoxin. Supplementation studies with Lemna paucicostata and Arabidiopsis supported HPPD as the target, although in vitro enzyme inhibition was not found. CONCLUSIONS: t-Chalcone is possibly a protoxin that is converted to a HPPD inhibitor in vivo. © 2019 Society of Chemical Industry.


Assuntos
Arabidopsis/efeitos dos fármacos , Agentes de Controle Biológico/toxicidade , Chalcona/toxicidade , Herbicidas/toxicidade , Transcriptoma/efeitos dos fármacos , Apoptose , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
2.
Med Chem ; 14(4): 322-332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29332599

RESUMO

BACKGROUND: Although the expression levels of many P450s differ between tumour and corresponding normal tissue, CYP1B1 is one of the few CYP subfamilies which is significantly and consistently overexpressed in tumours. CYP1B1 has been shown to be active within tumours and is capable of metabolising a structurally diverse range of anticancer drugs. Because of this, and its role in the activation of procarcinogens, CYP1B1 is seen as an important target for anticancer drug development. OBJECTIVE: To synthesise a series of chalcone derivatives based on the chemopreventative agent DMU-135 and investigate their antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1. METHOD: A series of chalcones were synthesised in yields of 43-94% using the Claisen-Schmidt condensation reaction. These were screened using a MTT assay against a panel of breast cancer cell lines which have been characterised for CYP1 expression. RESULT: A number of derivatives showed promising antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1, while showing significantly lower toxicity towards a non-tumour breast cell line with no CYP expression. Experiments using the CYP1 inhibitors acacetin and α-naphthoflavone provided supporting evidence for the involvement of CYP1 enzymes in the bioactivation of these compounds. CONCLUSION: Chalcones show promise as anticancer agents with evidence suggesting that CYP1 activation of these compounds may be involved.


Assuntos
Antineoplásicos/farmacologia , Chalcona/análogos & derivados , Inibidores das Enzimas do Citocromo P-450/farmacologia , Pró-Fármacos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Benzoflavonas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Chalcona/síntese química , Chalcona/química , Chalcona/farmacologia , Chalcona/toxicidade , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1B1/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/toxicidade , Flavonas/farmacologia , Humanos , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/toxicidade
3.
Bioorg Med Chem ; 25(17): 4805-4816, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28774575

RESUMO

A series of new heterocycles-linked chalcone conjugates has been designed and synthesized by varying different alkane spacers. These conjugates were tested for their in vitro cytotoxic potential against a panel of selected human cancer cell lines namely, lung (A549 and NCI-H460), prostate (DU-145 and PC-3), colon (HCT-15 and HCT-116), and brain (U-87 glioblastoma) by MTT assay. Notably, among all the tested compounds, 4a exhibited potent cytotoxicity on NCI-H460 (lung cancer) cells with IC50 of 1.48±0.19µM. The compound 4a showed significant inhibition of tubulin polymerization and disruption of the formation of microtubules (IC50 of 9.66±0.06µM). Moreover, phase contrast microscopy and DAPI staining studies indicated that compound 4a can induce apoptosis in NCI-H460 cells. Further, the flow-cytometry analysis revealed that compound 4a arrests NCI-H460 cells in the G2/M phase of the cell cycle. In addition, molecular docking studies of the most active compounds 4a and 4b into the colchicine site of the tubulin, revealed the possible mode of interaction by these new conjugates.


Assuntos
Chalcona/química , Chalcona/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , Células A549 , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Chalcona/síntese química , Chalcona/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Humanos , Concentração Inibidora 50 , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Microscopia de Contraste de Fase , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/toxicidade
4.
Eur J Med Chem ; 126: 52-60, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27744186

RESUMO

A series of chalcone analogous compounds were designed and synthesized. Replacing/substituting the enone or ethylenic bridge of the parent chalcone with rigid heterocyclic moieties or substituted aromatic amines gave nineteen target compounds. Their cytotoxic activities were screened against both breast and liver cancer cells as well as breast and liver normal cells. Target compounds were also evaluated for their inhibition activity of tubulin beta polymerization. Target compound 2e, 3a, 3b, 3c, 4a-4d, 5a, 5b and 6 showed broad spectrum excellent anticancer activity against both MCF-7 and HepG2. Compound 4a showed the most TUBb inhibition activity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Chalcona/síntese química , Chalcona/farmacologia , Desenho de Fármacos , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , Antineoplásicos/química , Antineoplásicos/toxicidade , Mama/citologia , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Chalcona/toxicidade , Técnicas de Química Sintética , Células Hep G2 , Humanos , Fígado/citologia , Células MCF-7 , Tubulina (Proteína)/química , Moduladores de Tubulina/química , Moduladores de Tubulina/toxicidade
5.
Bioorg Med Chem Lett ; 26(16): 3918-22, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27423479

RESUMO

A series of novel dithiocarbamate-chalcone derivates were designed, synthesized and evaluated for antiproliferative activity against three selected cancer cell lines (EC-109, SK-N-SH and MGC-803). Majority of the synthesized compounds exhibited moderate to potent activity against all the cancer cell lines assayed. Particularly, compounds II2 and II5 exhibited the excellent growth inhibition against SK-N-SH with IC50 values of 2.03µM and 2.46µM, respectively. Further mechanism studies revealed that compound II2 could obviously inhibit the proliferation of SK-N-SH cells by inducing apoptosis and arresting the cell cycle at G0/G1 phase.


Assuntos
Antineoplásicos/síntese química , Chalcona/análogos & derivados , Desenho de Fármacos , Tiocarbamatos/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/síntese química , Chalcona/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Tiocarbamatos/síntese química , Tiocarbamatos/toxicidade , Proteína Supressora de Tumor p53/metabolismo
6.
J Ethnopharmacol ; 191: 350-359, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27318274

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Flavokawain A, the major chalcone in kava extracts, was served as beverages for informal social occasions and traditional ceremonials in most South Pacific islands. It exhibited strong antiproliferative and apoptotic effects against human prostate and urinary bladder cancer cells. AIM OF THE STUDY: The current study was purposed to investigate the interaction between Flavokawain A and Cytochrome P450, including the inhibitory effects of Flavokawain A on predominant CYP450 isotypes and further clarified the inhibitory mechanism of FKA on CYP450 enzymes. Besides, study about identifying the key CYP450 isotypes responsible for the metabolism of FKA was also performed. MATERIALS AND METHODS: In this study, probe-based assays with rat liver microsome system were used to characterize the inhibitory effects of FKA. Molecular docking study was performed to further explore the binding site of FKA on CYP450 isoforms. In addition, chemical inhibition experiments using specific inhibitors (a-naphthoflavone, quinidine, sulfamethoxazde, ketoconazole, omeprazole) were performed to clarify the individual CYP450 isoform that are responsible for the metabolism of FKA. RESULTS: FKA showed significant inhibition on CYP1A2, CYP2D1, CYP2C6 and CYP3A2 activities with IC50 values of 102.23, 20.39, 69.95, 60.22µmol/L, respectively. The inhibition model was competitive, mixed-inhibition, uncompetitive, and noncompetitive for CYP1A2, CYP2D1, CYP2C6 and CYP3A2 enzymes. Molecular docking study indicated the ligand-binding conformation of FKA in the active site of CYP450 isoforms. The chemical inhibition experiments showed that the metabolic clearance rate of Flavokawain A decreased to 19.84%, 50.38%, and 67.02% of the control in the presence of ketoconazole, sulfamethoxazde and a-naphthoflavone. CONCLUSION: The study showed that Flavokawain A has varying inhibitory effect on CYP450 enzymes and CYP3A2 was the principal CYP isoform contributing to the metabolism of Flavokawain A. Besides, CYP2C6 and CYP1A2 isoforms also play important roles in the metabolism of FKA. Our results provided a basis for better understanding the biotransformation of FKA and prediction of drug-drug interaction of FKA.


Assuntos
Chalcona/análogos & derivados , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/efeitos dos fármacos , Animais , Sítios de Ligação , Biotransformação , Chalcona/química , Chalcona/metabolismo , Chalcona/farmacologia , Chalcona/toxicidade , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/toxicidade , Família 2 do Citocromo P450/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Isoenzimas , Cinética , Fígado/enzimologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Ratos Sprague-Dawley
7.
Pharm Biol ; 54(9): 1503-12, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26789234

RESUMO

Context Flavokawains are secondary metabolites from the kava plant (Piper methysticum Forst. f., Piperaceae) that have anticancer properties and demonstrated oral efficacy in murine cancer models. However, flavokawains also have suspected roles in rare cases of kava-induced hepatotoxicity. Objective To compare the toxicity flavokawains A and B (FKA, FKB) and monitor the resulting transcriptional responses and cellular adaptation in the human hepatocyte cell line, HepG2. Materials and methods HepG2 were treated with 2-100 µM FKA or FKB for 24-48 h. Cellular viability was measured with calcein-AM and changes in signalling and gene expression were monitored by luciferase reporter assay, real-time PCR and Western blot of both total and nuclear protein extracts. To test for subsequent resistance to oxidative stress, cells were pretreated with 50 µM FKA, 10 µM FKB or 10 µM sulphoraphane (SFN) for 24 h, followed by 0.4-2.8 mM H2O2 for 48 h, and then viability was assessed. Results FKA (≤100 µM) was not toxic to HepG2, whereas FKB caused significant cell death (IC50=23.2 ± 0.8 µM). Both flavokawains activated Nrf2, increasing HMOX1 and GCLC expression and enhancing total glutathione levels over 2-fold (p < 0.05). FKA and FKB also activated HSF1, increasing HSPA1A and DNAJA4 expression. Also, flavokawain pretreatment mitigated cell death after a subsequent challenge with H2O2, with FKA being more effective than FKB, and similar to SFN. Conclusions Flavokawains promote an adaptive cellular response that protects hepatocytes against oxidative stress. We propose that FKA has potential as a chemopreventative or chemotherapeutic agent.


Assuntos
Antioxidantes/farmacologia , Chalcona/análogos & derivados , Flavonoides/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Kava , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Chalcona/isolamento & purificação , Chalcona/farmacologia , Chalcona/toxicidade , Citoproteção , Relação Dose-Resposta a Droga , Flavonoides/isolamento & purificação , Flavonoides/toxicidade , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Kava/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Plantas Medicinais , Fatores de Tempo , Regulação para Cima
8.
Fish Physiol Biochem ; 42(2): 483-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26676512

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase (GR) are metabolically quite important enzymes. Within this study, these two enzymes were purified for the first time from the gills of Lake Van fish. In the purifying process, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity column chromatography techniques for glucose-6-phosphate dehydrogenase, temperature degradation and 2',5'-ADP Sepharose 4B affinity column chromatography for glutathione reductase enzyme were used. The control of the enzyme purity and determination of molecular weight were done with sodium dodecyl sulfate polyacrylamide gel electrophoresis. K(M) and V(max) values were determined with Lineweaver-Burk plot. Besides, the effects of some chalcone derivatives on the purified enzymes were analyzed. For the ones showing inhibition effect, % activity-[I] figures were drawn and IC50 values were determined. K(i) value was calculated by using Cheng-Prusoff equation.


Assuntos
Chalcona/toxicidade , Brânquias/metabolismo , Glutationa Redutase/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Peixes/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Lagos
9.
Eur J Med Chem ; 95: 230-9, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25817773

RESUMO

The manuscript describes the synthesis of novel amide tethered 7-chloroquinoline-chalcone and 7-chloroquinoline-ferrocenylchalcone bifunctional hybrids and their evaluation as antimalarial agents against W2 resistant strain of Plasmodium falciparum. The antiplasmodial activity of 7-chloroquinoline-ferrocenylchalcones was found to be less than their corresponding simple chalcone conjugates. The presence of a methoxy substituent at para position of ring B on chalcones and longer alkyl chain length markedly improved the antiplasmodial profiles of the synthesized scaffolds with the most potent of the test compound exhibiting an IC50 value of 17.8 nM.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Chalcona/química , Chalcona/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinonas/química , Amidas/química , Antiprotozoários/síntese química , Antiprotozoários/toxicidade , Chalcona/síntese química , Chalcona/toxicidade , Técnicas de Química Sintética , Cloroquina/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Células HeLa , Humanos , Ligação de Hidrogênio
10.
Food Chem Toxicol ; 77: 111-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576957

RESUMO

The plant Angelica keiskei contains two main physiologically active flavonoid chalcones, 4-hydroxyderricin and xanthoangelol. Known as ashitaba in Japan, powder from the sap is widely consumed for its medicinal properties in Asia as a dietary supplement. Limited previously reported mammalian studies were without evidence of toxicity. GLP studies reported here, including a bacterial reverse mutation assay, a chromosome aberration assay, and an in vivo micronucleus assay are negative for genotoxicity. A GLP- compliant 90-day repeated oral gavage study of ashitaba yellow sap powder containing 8.45% chalcones in Sprague Dawley rats resulted in expected known physiological effects on coagulation parameters and plasma lipids at 300 and 1000 mg/kg/day. Ashitaba-related pathology included a dose-related male rat-specific alpha 2-urinary globulin nephropathy at 100, 300, and 1000 mg/kg/day and jejunal lymphangiectasia in both sexes at 1000 mg/kg/day. All other study parameters and histopathological changes were incidental or not of toxicological concern. Based on these studies ashitaba chalcone powder is not genotoxic with a NOAEL of 300 mg/kg in male and female rats.


Assuntos
Angelica/química , Chalcona/análogos & derivados , Extratos Vegetais/toxicidade , Animais , Células CHO , Chalcona/toxicidade , Cricetulus , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Japão , Masculino , Camundongos , Nível de Efeito Adverso não Observado , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Subcrônica
11.
Chem Res Toxicol ; 27(10): 1871-6, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25185080

RESUMO

Anxiolytic kava products have been associated with rare but severe hepatotoxicity in humans. This adverse potential has never been captured in animal models, and the responsible compound(s) remains to be determined. The lack of such knowledge greatly hinders the preparation of a safer kava product and limits its beneficial applications. In this study we evaluated the toxicity of kava as a single entity or in combination with acetaminophen (APAP) in C57BL/6 mice. Kava alone revealed no adverse effects for long-term usage even at a dose of 500 mg/kg bodyweight. On the contrary a three-day kava pretreatment potentiated APAP-induced hepatotoxicity, resulted in an increase in serum ALT and AST, and increased severity of liver lesions. Chalcone-based flavokawains A (FKA) and B (FKB) in kava recapitulated its hepatotoxic synergism with APAP while dihydromethysticin (DHM, a representative kavalactone and a potential lung cancer chemopreventive agent) had no such effect. These results, for the first time, demonstrate the hepatotoxic risk of kava and its chalcone-based FKA and FKB in vivo and suggest that herb-drug interaction may account for the rare hepatotoxicity associated with anxiolytic kava usage in humans.


Assuntos
Acetaminofen/toxicidade , Chalcona/análogos & derivados , Flavonoides/toxicidade , Kava/química , Fígado/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Chalcona/química , Chalcona/toxicidade , Sinergismo Farmacológico , Feminino , Flavonoides/química , Kava/metabolismo , Fígado/enzimologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pironas/química , Pironas/toxicidade
12.
J Evid Based Complementary Altern Med ; 19(1): 20-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24647375

RESUMO

The cytotoxic, antimutagenic, and antioxidant activities of methanolic extract and lophirones B and C derived from Lophira alata stem bark were evaluated. The extract and lophirones B and C significantly (P < .05) reduced the viability of Ehrlich ascites carcinoma cells. There were concentration-dependent reduction in 4-nitro-o-aminophenylenediamine and benzo[a]pyrene-induced frame shift mutation as well as aflatoxin B1-induced base pair substitution by the extract and lophirones B and C. The extract and lophirones B and C concentration dependently scavenged DPPH radical, superoxide anion radical, hydrogen peroxide, hydroxyl radicals, and reduced ferric ion in the potassium hexacyanoferrate III reducing system. The results obtained from this study revealed that methanolic extract and lophirones B and C derived from Lophira alata stem bark posses anticancer, antimutagenic, and antioxidant activities, with lophirone C producing the best anticancer, antimutagenic, and antioxidant activities. The acclaimed anticancer activity of Lophira alata may be attributed to lophirones B and C.


Assuntos
Antimutagênicos/toxicidade , Antineoplásicos/toxicidade , Antioxidantes/toxicidade , Chalcona/toxicidade , Ochnaceae/química , Casca de Planta/química , Extratos Vegetais/toxicidade , Antimutagênicos/química , Antimutagênicos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Linhagem Celular Tumoral , Chalcona/química , Chalcona/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Humanos , Mutação/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
13.
Molecules ; 19(1): 641-50, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24402197

RESUMO

The aim of this study was to investigate the in vivo toxicities of some novel synthetic chalcones. Chalcone and four chalcone analogues 1a-d were evaluated using zebrafish embryos following antibody staining to visualize their morphological changes and muscle fiber alignment. Results showed that embryos treated with 3'-hydroxychalcone (compound 1b) displayed a high percentage of muscle defects (96.6%), especially myofibril misalignment. Ultrastructural analysis revealed that compound 1b-treated embryos displayed many muscle defect phenotypes, including breakage and collapse of myofibrils, reduced cell numbers, and disorganized thick (myosin) and thin (actin) filaments. Taken together, our results provide in vivo evidence of the myotoxic effects of the synthesized chalcone analogues on developing zebrafish embryos.


Assuntos
Anormalidades Induzidas por Medicamentos/patologia , Chalcona/análogos & derivados , Chalcona/toxicidade , Fibras Musculares Esqueléticas/patologia , Teratogênicos/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/anormalidades , Peixe-Zebra
14.
Cell Biochem Funct ; 31(4): 289-97, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22987398

RESUMO

Recent studies report that chalcones exhibit cytotoxicity to human cancer cell lines. Typically, the form of cell death induced by these compounds is apoptosis. In the context of the discovery of new anticancer agents and in light of the antitumour potential of several chalcone derivatives, in the present study, we synthesized and tested the cytotoxicity of six chalcone derivatives on human colon adenocarcinoma cells. Six derivatives of 3-phenyl-1-(thiophen-2-yl) prop-2-en-1-one were prepared and characterized on the basis of their (1) H and (13) C NMR spectra. HT-29 cells were treated with synthesized chalcones on two concentrations by three different incubation times. Cells were evaluated by cell morphology, Tetrazolium dye (MTT) colorimetric assay, live/dead, flow cytometry (annexin V) and gene expression analyses to determine the cytotoxic way. Chalcones 3-(4-bromophenyl)-1-(thiophen-2-yl)prop-2-en-1-one (C06) and 3-(2-nitrophenyl)-1-(thiophen-2-yl)prop-2-en-1-one (C09) demonstrated higher cytotoxicity than other chalcones as shown by cell morphology, live/dead and MTT assays. In addition, C06 induced apoptosis on flow cytometry annexin V assay. These data were confirmed by a decreased expression of anti-apoptotic genes and increased pro-apoptotic genes. Our findings indicate in summary that the cytotoxic activity of chalcone C06 on colorectal carcinoma cells occurs by apoptosis.


Assuntos
Adenocarcinoma/fisiopatologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Chalcona/toxicidade , Neoplasias do Colo/fisiopatologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Chalcona/síntese química , Chalcona/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos
15.
Int J Mol Sci ; 13(11): 15343-59, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23203129

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important role in immune surveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL mediated death, it is important to search for and develop new strategies to overcome this resistance. Chalcones can sensitize cancer cells to TRAIL-induced apoptosis. We examined the cytotoxic and apoptotic effects of TRAIL in combination with four chalcones: chalcone, isobavachalcone, licochalcone A and xanthohumol on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor expression was analyzed using flow cytometry. The decreased expression of death receptors in cancer cells may be the cause of TRAIL-resistance. Chalcones enhance TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2. Our study has indicated that chalcones augment the antitumor activity of TRAIL and confirm their cancer chemopreventive properties.


Assuntos
Apoptose/efeitos dos fármacos , Chalcona/farmacologia , Neoplasias/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Linhagem Celular Tumoral , Chalcona/toxicidade , Sinergismo Farmacológico , Células HeLa , Humanos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/toxicidade
16.
Int J Nanomedicine ; 7: 4099-107, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22888246

RESUMO

Hydroxysafflor yellow A (HSYA), the main active ingredient of the safflower plant (Carthamus tinctorius L.), is a hydrophilic drug with low oral bioavailability. Water-in-oil-in-water (w/o/w) double emulsions may enhance the oral absorption of HSYA. In this study, we prepared a self-double-emulsifying drug delivery system (SDEDDS) to improve the absorption of HSYA. SDEDDS consists of water in oil emulsions and hydrophilic surfactants that can self-emulsify into w/o/w double emulsions in the aqueous gastrointestinal environment. Confocal laser scanning micrographs showed that spherical droplets were uniformly distributed in the dispersion medium with narrow particle size distribution and could form fine w/o/w double emulsions upon dilution in dispersion medium with gentle stirring. The dispersed oil droplets contained small dispersed aqueous droplets consistent with the characteristics of double emulsions. Furthermore, in vitro cellular experiments were performed to study the mechanism of the absorption promoting effect of SDEDDS. The accumulation of rhodamine-123 in Caco-2 cells was used to evaluate the efflux transport of p-glycoprotein inhibitor. Histopathologic studies on the rat intestine showed that SDEDDS can cause mucosal damage to a certain degree of toxicity, however this was not serious. These results suggest that SDEDDS can greatly improve the oral absorption of HSYA. Given the toxicity demonstrated to the small intestine, the formulation prescription should be improved to enhance security in the future.


Assuntos
Chalcona/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Quinonas/farmacocinética , Absorção , Análise de Variância , Animais , Área Sob a Curva , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Chalcona/química , Chalcona/farmacocinética , Chalcona/farmacologia , Chalcona/toxicidade , Relação Dose-Resposta a Droga , Emulsões/química , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Nanopartículas/administração & dosagem , Quinonas/química , Quinonas/farmacologia , Quinonas/toxicidade , Ratos , Ratos Sprague-Dawley , Rodaminas/química , Rodaminas/farmacocinética
17.
Chem Biodivers ; 9(6): 1133-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22700231

RESUMO

Six prenyl (=3-methylbut-2-en-1-yl) chalcones (=1,3-diphenylprop-2-en-1-ones), 2-7, and one natural non-prenylated chalcone, 1, have been synthesized and evaluated for their in vitro growth-inhibitory activity against three human tumor cell lines. A pronounced dose-dependent growth-inhibitory effect was observed for all prenylated derivatives, except for 7. The chalcone possessing one prenyloxy group at C(2'), i.e., 2, was the most active derivative against the three human tumor cell lines (5.9

Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Chalcona/análogos & derivados , Linhagem Celular Tumoral , Chalcona/síntese química , Chalcona/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estereoisomerismo
18.
Eur J Med Chem ; 54: 379-86, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22677029

RESUMO

To define the structural features responsible for the activity of 2,4-dihydroxy-6-isopentyloxychalcone, a newly established inhibitor of LPS induced NF-κB activation (IC(50) = 10 µM), a series of its analogues was prepared and studied for their in vitro activities against LPS induced NF-κB inhibition in RAW 264.7 cells. Among the synthesized derivatives, (E)-1-(2-(decyloxy)-6-hydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (IC(50) = 2.7 µM) and (E)-1-(2-hydroxy-6-(tetradecyloxy)phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (IC(50) = 4.2 µM) showed the most potent inhibition. The SAR studies confirmed that the length (C(8)-C(14)) and C-6 position of linear alkyl chain of ring A is an important factor for the inhibitory activity. Hydroxyl group and its location at 4-position on ring B is also important for the inhibition. The α,ß-unsaturated ketone moiety appears as a crucial motif of chalcones for the activity.


Assuntos
Chalcona/química , Chalcona/farmacologia , Interações Hidrofóbicas e Hidrofílicas , NF-kappa B/antagonistas & inibidores , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Chalcona/síntese química , Chalcona/toxicidade , Desenho de Fármacos , Concentração Inibidora 50 , Lipopolissacarídeos/farmacologia , Camundongos , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 22(13): 4314-7, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22668451

RESUMO

A new class of hybrid chalcones (17a-l &18a-l) was synthesized by Claisen-Schmidt condensation. All compounds were characterized by (1)H NMR, IR and mass spectral analysis and tested for their cytotoxic activity against PC-3 (prostate cancer), HT-29 (colon cancer), B-16 (mouse macrophages) and NCI-H460 (lung cancer) cell lines. Three compounds 18i, 18j and 18l (IC(50)=8.4, 7.9 & 5.9 µM) showed significant activity against PC-3 cell line.


Assuntos
Antineoplásicos/síntese química , Chalcona/análogos & derivados , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Chalcona/uso terapêutico , Chalcona/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Relação Estrutura-Atividade
20.
Dalton Trans ; 41(21): 6451-7, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22240736

RESUMO

Two series of ten chalcones and ten aurones, where ferrocene replaces the C ring and with diverse substituents on the A ring were synthesized. The compounds were tested against two antibiotic-sensitive bacterial strains, E. coli ATCC 25922 and S. aureus ATCC 25923, and two antibiotic-resistant strains, S. aureus SA-1199B and S. epidermidis IPF896. The unsubstituted compound and those with methoxy substitution showed an inhibitory effect on all bacterial strains at minimum inhibitory concentrations ranging between 2 and 32 mg L(-1). For four of these compounds, the effect was bactericidal, as opposed to bacteriostatic. The corresponding organic aurones did not show growth inhibition, underscoring the role of the ferrocene group. The methoxy-substituted aurones and the unsubstituted aurone also showed low micromolar (IC(50)) activity against MRC-5 non-tumoral lung cells and MDA-MB-231 breast cancer cells, suggesting non-specific toxicity.


Assuntos
Bactérias/efeitos dos fármacos , Benzofuranos/química , Benzofuranos/farmacologia , Chalcona/química , Chalcona/farmacologia , Compostos Ferrosos/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Benzofuranos/síntese química , Benzofuranos/toxicidade , Linhagem Celular Tumoral , Chalcona/síntese química , Chalcona/toxicidade , Determinação de Ponto Final , Humanos , Metalocenos , Testes de Sensibilidade Microbiana , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...